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Cosmological Dissipative Structure 
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The concept of black hole entropy is generalized to cosmological event horizons. 
An analogue of the Bekenstein-Hawking generalized second law of thermo- 
dynamics is suggested. This law is illustrated by considering entropy changes in 
various black hole de Sitter spacetimes, and also with the help of a viscous-driven 
de Sitter universe model, which provides a cosmological version of a far-from- 
equilibrium dissipative structure. The law apparently fails for some recontracting- 
universe models. This indicates that a contribution to the gravitational entropy 
has been omitted. A possible remedy involving algorithmic complexity theory 
is suggested. I propose the use of a cosmic "entropy censorship" hypothesis as 
a filter for acceptable field theories. 

1. B A C K G R O U N D  

One o f  the most  chal lenging problems of  fundamenta l  physics is to 
explain the origin o f  time asymmetry  in the physical  world. There is general 
agreement  (Davies, 1974) that  the "a r row o f  t ime" must  ult imately be rooted 
in cosmological  considerat ions,  possibly by reference to special initial 
condi t ions  (Penrose,  1979). A proper  t reatment  o f  time asymmetry  in cos- 
mology  must  take into account  the the rmodynamics  o f  both  the cosmic 
material  and the cosmological  gravitat ional  field. 

The t he rmodynamic  propert ies  o f  self-gravitating systems can appear  
very strange, involving peculiarit ies such as negative specific heat. Moreover ,  
the theory  is replete with difficulties, which have not  yet been resolved. The 
implicat ions o f  the subject  for  cosmology  have been discussed ever since 
To lman ' s  (1934) early work.  

In  recent  years, the thrust  o f  research has been toward  at tempting to 
define a gravitat ional  en t ropy (Penrose,  1979). The stimulus for this direction 
o f  investigation comes f rom Hawking ' s  (1975) famous  discovery o f  black 
hole radiance,  which leads him to associate an ent ropy with the black hole 
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determined by the ratio of  its event horizon area with the Planck area. Thus 

Sbh= A/4 (1.1) 

where A is the event horizon area and I use units h = c = G = k = 1. This 
leads to a generalized second law of thermodynamics, as first suggested by 
Bekenstein (1973): 

Sbrq- Sm ~ 0 (1.2) 

where Sm is the entropy of the matter in the environment of the hole, and 
the overdot indicates differentiation with respect to observer time. 

If  one regards the black hole as the equilibrium end state of gravitational 
self-aggregation, then it seems reasonable that (1.1) should be regarded as 
a form of  gravitational entropy, to be added to ordinary matter entropy 
when discussing the thermodynamics of self-gravitating systems. One can 
then envisage a further generalization of the second law away from this 
equilibrium state to more general gravitational fields. In this wider context, 
the law would encompass the well-known tendency for self-gravitating 
systems to grow more clumpy with time. Penrose (1979) has discussed how 
this tendency might relate to the arrow of time in cosmology. 

In spite of the intuitive appeal of these ideas, no completely satisfactory 
mathematical expression has been forthcoming to play the role of gravita- 
tional entropy, except in the case of  black holes, and the formulation of a 
consistent theory of  thermodynamics for self-gravitating systems remains 
an outstanding challenge. Special importance attaches to the cosmological 
case, where the primordial smoothness of the cosmological gravitational 
field is the key to explaining the cosmological arrow of time (Davies, 1983, 
1984a). As a contribution to this topic, I here discuss a limited generalization 
of the Bekenstein-Hawking entropy concept, to spacetimes which possess 
cosmological event horizons. 

2. DE SITTER AND RELATED SPACETIMES 

Discussions of why the universe which emerged from the big bang was 
relatively gravitationally smooth tend to be formulated these days in the 
context of  the inflationary universe scenario [see Turner (1988) for a 
comprehensive review]. According to this theory, the universe embarked 
upon a period of  de Sitter-like expansion in its primordial phase, during 
which time the cosmological scale factor a(t) assumed the form 

a(t) = exp(Ht)  (2.1) 

where H is a constant, related to the cosmological constant A by H 2 = A/3. 
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For numerical ease I shall define the cosmological constant here as 3A, and 
take H = A I/2. 

If  the exponential expansion were allowed to proceed for all time, this 
spacetime would possess an event horizon with area 

a = 4 ~ / H  2 (2.2) 

(assuming spatial flatness). However, so long as exponential expansion 
continues for many e-folding times (which it is supposed to do), then there 
will be an effective de Sitter horizon, even though strictly speaking the 
notion of  event horizon is an asymptotic concept. 

Gibbons and Hawking (1977) have argued that de Sitter horizons 
possess thermodynamic properties closely similar to black hole horizons. 
In particular, the de Sitter horizon has an associated entropy of A / 4  as in 
the black hole case, and a temperature 

T = H/2"n" = A1/2/2~ " (2.3) 

It must be said, however, that the thermodynamic status of de Sitter horizons 
differs in some crucial respects from the black hole case: 

(a) The observer is "inside" the de Sitter horizon, but outside the black 
hole horizon. 

(b) The de Sitter horizon is observer dependent. That is, each observer 
in de Sitter space will possess a horizon at a proper distance l / H ,  but 
observers at different positions, or at the same position but moving 
differently, will locate their horizons differently. In contrast, the black hole 
horizon is independent of  the observer so long as the observer is outside. 

(c) Assuming a de Sitter-invariant quantum vacuum state, a static 
particle detector will respond as though immersed in a bath of thermal 
radiation at the temperature given by (2.3). However, the stress-energy- 
momentum tensor of this state is not that of thermal radiation. In particular, 
the pressure p and energy density p are not related by p = p /3 .  By contrast, 
the stress-energy-momentum tensor in the spatially asymptotic region of a 
black hole in the analogous Hart le-Hawking vacuum state does correspond 
to thermal radiation (e.g., Birrell and Davies, 1981). 

(d) The total entropy of a black hole in equilibrium with a heat bath 
consists of  two terms: the event horizon area (gravitational entropy) and 
the conventional entropy of  the radiation which constitutes the heat bath. 
The total entropy of  de Sitter space consists of only one term: the event 
horizon area. If  the system is treated as /f de Sitter space were filled with 
ordinary thermal radiation at temperature given by (2.3), this radiation 
would have an entropy equal to that of the horizon area. Including both 
contributions thus overcounts the entropy by a factor 2. 
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(e) Unlike in the black hole case, there is no parameter  to play the 
role of  mass-energy for de Sitter space. Thus, in discussing the exchange 
of  energy and entropy between de Sitter horizons and matter, the consistent 
application of the first and second laws of thermodynamics is problematic. 

(f) Black hole entropy has a natural pedagogical interpretation in 
terms of the information lost to the outside universe when the material 
which formed the hole collapsed gravitationally. In the case of  de Sitter 
space there is no obvious meaning to be attached to the total information 
content of  the matter fields that lie beyond the horizon. 

In spite of  these differences, there is good circumstantial evidence for 
a generalized second law of  thermodynamics that may be applied to de 
Sitter horizons. First, it may be shown (Davies, in press-a) that there is a 
limited sense in which de Sitter entropy can be interpreted as "missing 
information."  The technique is to consider an exactly soluble radiation- 
dominated big-bang Friedmann model universe with a cosmological con- 
stant. This model tends to de Sitter space at late time. The event horizon 
starts out at the big bang with zero area, and grows monotonically toward 
its constant de Sitter space value. At the same time the radiation flows away 
across the horizon, leaving the space devoid of matter at late time. It turns 
out that the initial information content of the matter within a horizon volume 
is equal to the final horizon entropy. 

Second, one may consider (Davies, 1984b) a variety of  thought-experi- 
ments in which boxes of  thermal radiation are slowly " lowered" toward a 
de Sitter horizon, and their contents t ipped across the horizon. At first sight 
this strategy seems to allow for a violation of the ordinary second law of 
thermodynamics,  for the following reason. When the box reaches the 
horizon, an amount  of  work equal to its total mass-energy can be extracted 
by the lowering mechanism. If, then, the contents of  the box are t ipped 
over the horizon, no energy exchange takes place. Hence there is no change 
in the structure of spacetime (in particular, the horizon area remains the 
same), and no change in the total energy. Yet an amount  of  entropy equal 
to the contents of  the box has been lost to the region of the universe within 
the horizon. In analogy to the work of Unruh and Wald (1982) in the black 
hole case, one finds, however, that complete consistency with the second 
law of thermodynamics is restored as soon as account is taken of the thermal 
properties of  the de Sitter horizon. 

Perhaps the most persuasive evidence in favor of the successful gen- 
eralization of the second law to de Sitter horizons comes from examining 
models in which both black hole and de Sitter horizons are present, and 
then considering a trade of energy and entropy between them. For the 
purpose of  these calculations it is easier to work with the static coordi- 
natization of  de Sitter space, rather than with the scale factor (2.1). The 
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metric for a spherical (nonrotating) black hole of  mass M and electric 
charge Q in a de Sitter universe with cosmological constant 3A is 

ds2= C(r)  dt 2 -  C(r)  -1 dr2+ r2(dO2 +sin 2 0 d e  2) (2.4) 

where 

C(r) = 1 - 2 M / r +  Q2/r2 -  Ar2 (2.5) 

The horizons are located at the roots of  the equation C ( r ) = 0 ,  or of  the 
quartic 

Ar 4 -  r 2 + 2Mr - Q2 = 0 (2.6) 

the largest root, rl, being the radius of  the cosmological horizon, and the 
next largest root, r2, the radius of  the black hole horizon. The total horizon 
area of  interest is therefore 

a = 4~-(r2 + r~) (2.7) 

The temperature of  a horizon is given by 

T = K/2~r (2.8) 

where K is the surface gravity, and given by 

K =�89 (2.9) 

evaluated at the relevant root rl or r2. 
I f  K1 # K2, then there will be a temperature difference between the two 

horizons. Energy will then flow from one to the other, as a result of  which 
M and the horizon areas will change. Assuming no charged particle flow, 
Q remains fixed. So does A. Differentiating (2.6) and (2.7) and using the 
definition of  K for each root of  interest, one obtains 

dS =- �88 da  = (1/T~ - 1/T2) d M  (2.10) 

It follows that dS = 0 only if T~ = T~, otherwise dS > 0, on the assumption 
that mass-energy will flow from hot to cold. 

This argument is independent  of  the detailed from of  C(r). One could, 
for example,  arrive at the same conclusion even for the case that matter is 
present between the horizons, e.g., a static shell surrounding the black hole 
(Davies et aL, 1986). By definition, the coefficient of  the 1/r term in C(r) 
is the mass M. Putting C = C(r, M / r ) ,  we have, at the horizons, 

dC = ( l / r )  d m  + (OC/Or) dr = 0 (2.11) 

From the definition of  surface gravity, (2.9), we may rewrite (2.11) as 

d M  =�89 T d S  

whence, in the case of  two horizons, (2.10) follows. 
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The foregoing shows quite generally that attributing entropy to the 
cosmological horizon using (1.1) is consistent with a generalized second 
law. It might be objected, however, that this demonstration neglects the 
entropy of  the radiation that fills the gap between the horizons. This entropy 
will change both because the horizon temperatures change as a result of 
the energy flow, and because the total volume between the horizons changes. 
But here we encounter one of  the difficulties mentioned above [point (d)]. 
The entropy of de Sitter space is that of the horizon only: there is no actual 
de Sitter radiation to possess an entropy. On the other hand, in asymptoti- 
cally flat spaces the black hole radiation does possess entropy, which must 
be added to that of the black hole horizon entropy. But when the black 
hole is in de Sitter space, it is not obvious how one should quantify the 
radiation entropy. How can one say whether a given quantity of radiation 
"belongs" to the black hole or the cosmological horizon? 

These difficulties may be circumvented by considering certain definite 
initial and final states, where the radiation entropy cannot decrease, and 
comparing total horizon areas. As a first example, consider the black hole 
to be confined within a massless membrane that traps radiation. The black 
hole will come into stable equilibrium with the radiation within the mem- 
brane. If  the volume enclosed by the membrane is small, we may neglect 
the entropy of  the trapped radiation compared to that of the sum of the 
horizons. There will (for reasons discussed above) be no entropy associated 
with any de Sitter radiation outside the membrane. 

Now suppose that the membrane is removed, allowing the radiation 
to escape and the black hole to evaporate. Eventually all the radiation 
produced by the hole will pass across the cosmological horizon, and the 
system will settle down to de Sitter space, with zero radiation entropy once 
again. For the quartic (2.6) the sum of all four roots vanishes, while the 
sum of the squares is 2/A. These two conditions taken together imply 

r~ + r2 + rlr2 < 1/A (2.12) 

hence 

a = 47r (r~ + r~) < 47r/A (2.13) 

But the final de Sitter horizon area is 47r/A, so (2.13) implies that the final 
horizon area exceeds the initial area, in conformity with the generalized 
second law. 

A black hole with nonzero Q will evaporate completely only so tong 
as it can divest itself of the charge, by the radiation of charged particles. 
For this purpose it must be hot enough, as there are no massless charged 
particles. The temperature must therefore exceed the rest mass of the 
electron, otherwise charged particle production will be suppressed by the 
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Boltzmann factor exp(-mc2/kT). For a black hole in asymptotically flat 
spacetime the nature of  the evaporation depends (Davies, 1977) on the ratio 
QZ/M2. If, initially, Q2<0.86M2,  then the specific heat of  the hole is 
negative, and the hole gets hotter as it radiates. If, however, the hole still 
does not get hot enough to radiate charged particles, the mass will eventually 
fail below the critical value M 2 = Q2/0.86 and the specific heat will become 
positive. After this the temperature falls as energy is radiated, further 
suppressing any charged particle production. The evaporation will then 
asymptote at M 2 = Q2, at which the temperature of  the hole is zero. 

The case of  a black hole in de Sitter space is similar, although the 
various parameters  will be corrected by A terms. For example, there is the 
curious feature that zero temperature now occurs at a value M 2 < Q2: the 
charge exceeds the mass. (This condition corresponds to a naked singularity 
in the A = 0 case.) In the chargeless case, the black hole is always hotter 
than the cosmological horizon (except when the roots rl = r2 and the two 
horizons coincide). Therefore, the hole always evaporates completely. For 
nonzero Q one has the curious possibility that, if M2/Q2 is small enough, 
the temperature of the hole can be less than that of  the cosmological horizon. 
It will then happen that energy will flow from the cosmological horizon 
into the hole until (stable) equilibrium is achieved. 

One can therefore envisage the following scenario. Initially the black 
hole has zero temperature.  There will thus be zero radiation entropy in the 
space between the horizons. The two horizons are now allowed to come 
into equilibrium at some T >  0. I f  the total horizon area at equilibrium is 
greater than the initial area, then the second law is satisfied, because any 
emitted radiation that accumulates between the horizons only contributes 
positively to the total entropy. 

To study this scenario as a further test of  the second law, I first 
investigate the condition for the black hole to have a common temperature 
with the cosmological horizon. A solution is (Mellor and Moss, 1989) 

M e =  Q2 

K1 = K2 = [A(1-4mA1/2)]  lie 
(2.14) 

r~ = �89 + (1 -4MA1/2)  ~/2] 

r2 = �89 - ( 1 - 4 M A ' / 2 )  '/2] 

from which we obtain 

A = 4~r(r 2 + r 2) = 4Tr(1 - 2l QIA)I/Z/A (2.15) 

Now consider the case of  the black hole at zero temperature. The condition 
OC/Or= 0 at r2=0  is equivalent to the condition for equal roots r2 = r3, 
where r3 is the smallest positive root of  (2.6). (The remaining root, r4, is 
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always negative.) It is also the condition for the limiting value of  Q : / M  z 
before the horizon disappears and the black hole turns into a naked singular- 
ity. In this limiting case, (2.6) may be factorized as 

( r -  r l ) ( r -  r2 ) : ( r -  r4) -- 0 (2.16) 

Compar ison of coefficients of  powers of  r in (2.6) and (2.16) gives four 
equations for the three roots in terms of M, Q, and A. Eliminating rl, r4, 
and A yields a quadratic equation for r2. The relevant root of  this equation 
is 

r2 = 3 M / 2 -  ( 9 M e / 4 - 2 Q 2 )  1/2 (2.17) 

The four equations also yield for the total event horizon area 

a = 4rr(r  2 + r 2) = 4rr[ 1 - 2(Mr2/A)1/2]/A (2.18) 

A further complicated equation gives a relationship between M, Q, and A. 
This initial state will be transformed into the final state by the flow of 

thermal mass-energy from the cosmological horizon into the black hole. As 
a result, M will rise. However,  both A and Q remain fixed. As the final 
state has M 2 = Q2, it follows that, for the initial state, M 2 < Q2. A comparison 
of  (2.15) and (2.18) reveals that, given this condition, the event horizon 
area of  the final state exceeds that of  the initial state, in conformity with 
the generalized second law. 

3. M O R E  G E N E R A L  H O R I Z O N S  

The success of  the generalized second law of thermodynamics for black 
hole and de Sitter horizons prompts the question of whether attributing an 

zA to the event horizon area is valid under all circumstances~ Many entropy 1 
cosmological models con ta in  event horizons, but they are not static. 
Moreover, particle detectors generally do not have a thermal response in 
these models. The thermodynamic connection of the horizon is therefore 
less obvious. 

The first step in investigating this topic is to establish an area theorem 
for cosmological horizons analogous to Hawking's  area theorem for black 
holes. For Fr iedmann-Rober tson-Walker  models with scale factor a( t ) ,  
uniformly filled with matter with energy density p and pressure p, the 
following theorem may be proved (Davies, in press-b). 

Theorem. I f  p + p  -> 0 and a (t) --> 0 as t --> co, then the event horizon area 
is a nondecreasing function of time. 

The theorem is valid for all three values of  the curvature parameter  
k = 0, +1. The condition p +p ->  0 is known as the dominant  energy condi- 
tion, and is identical to that needed to prove the black hole area theorem. 
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Again, proceeding by analogy with black holes, one is prompted to 
consider what happens if the dominant  energy condition is relaxed. In the 
black hole case this comes about because the quantum vacuum expectation 
value of the energy density near the hole is negative, allowing a flux of 
negative energy to stream into the hole. As a result, the mass, and hence 
horizon area, of  the hole decreases. The loss in entropy that this represents 
is offset by the entropy of the thermal Hawking radiation which is emitted 
into the hole's environment.  In this way the generalized second law of 
thermodynamics  remains valid. 

In the cosmological case, a natural way to relax the dominant  energy 
condition is to introduce a bulk viscosity into the cosmological fluid. I f  the 
fluid has equation of state p = ( y - 1 ) p  and bulk viscosity ~/= c~p (c~ = 
const > 0), then the effective pressure is given, not by p, but by p '  = p - 3 Hap. 
I f  one chooses y < 3Ha,  then p '  < - p ,  thus violating the energy condition. 

The Friedmann equations can be solved exactly (Barrow, to appear)  
in the k = 0 case to give 

In a + Ca 3v/2= T ( t -  to)/3c~ (3.1) 

where C and to are constants. The radius of  the event horizon is defined as 

I R(t)  a(t) dt ' /a(t ')  (3.2) 

where the integral is taken over the whole future from the time t of  interest. 
This quantity can also be evaluated exactly for this model. 

I f  a = y = 0, one recovers the normal de Sitter solution (2.1). For the 
purposes of  investigating the second law, I consider only small departures 
from this solution, with y ~ 0  and a << 1/14. Then from the exact solution 
one obtains (Davies, in press-b) 

R ~ 1 /H (3.3) 

R = -9Ha~2 (3.4) 

whence 

1 " 

aA = 27rRR ~ -9~-a  (3.5) 

We see that the effect of  viscosity in this case is to cause the horizon area 
to decrease with time. However,  the very viscosity which produces this 
decrease also generates heat, and hence entropy, in the cosmological 
material. The question then arises as to whether the latter will offset the 
former. 

Although a particle detector will no longer register a precisely thermal 
spectrum, if the departure from de Sitter expansion is small, then one can 
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define an "instantaneous temperature" by supposing that the detector is 
switched on and off slowly, yet still on a short time scale compared to H~ I:I. 
It can then be shown that the detector registers a slowly varying Hawking- 
type temperature 

T : 1/27rR (3.6) 

We take this to be the effective irreducible temperature of the cosmological 
fluid. The rate of entropy production within the horizon volume V = 47rR3/3 
due to the viscosity is given by (Davies, in press-b) 

S,~ = 9 H 2 a p V / T  (3.7) 

The Friedmann equations give 

p = 3H2/87r (3.8) 

so, using (3.3), (3.6), and (3.8) in (3.7), we find 

St, ~97ra (3.9) 

which is the negative of (3.5). It follows that the generalized second law of 
thermodynamics remains valid even in this case, if one assigns a gravitational 
entropy to the cosmological event horizon area, using the relationship (1.1), 
as for the black hole. 

4. DISSIPATIVE STRUCTURE 

It is interesting to note that (3.1) possesses a special solution: 

H = y / 3 a  = const (4.1) 

This corresponds to de Sitter space, but it is not the usual de Sitter solution 
(except in the limit a -- y- -  0), which is devoid of matter. Here, there is 
cosmological material which generates entropy through viscosity, and 
achieves a dynamic equilibrium by exporting this entropy across the event 
horizon at a constant rate. This entropy and energy flow is maintained by 
a temperature differential between the fluid and the horizon. The contents 
of the universe are therefore not in thermodynamic equilibrium with the 
horizon, although the system is in gravitational equilibrium. The system 
resembles a dissipative structure of nonequilibrium thermodynamics (e.g., 
Nicolis and Prigogine, 1977). It is also a curious form of the old steady-state 
universe of Hoyle (1948). However, it should be pointed out that this 
particular cosmological dissipative structure is unstable. It evolves away 
from the steady-state form toward power-law Friedmann-type behavior. 
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Barrow (to appear) has discussed other viscous-driven cosmological models 
in which de Sitter space is a s tab le  attractor as t ~ oo. 

To maintain the steady-state condition, T, p, p, and the entropy density 
s of the cosmological fluid must all remain constant with time. Considering 
the total entropy S in a comoving volume a 3 and applying the first law of 
thermodynamics, we find 

s T  = p +p  = 7P (4.2) 

Then, using (2.3) and (3.8), we obtain 

s T  = (3 Try/2) T~ (4.3) 

where Th is the horizon temperature. The entropy density of the fluid cannot 
exceed that of thermal radiation at temperature T, so 

s T  <- 4 a T a / 3  (4.4) 

where a is the radiation constant, equal to ~-2/60 in our units. From (4.3) 
and (4.4) one obtains 

T --> (135 y /2  ~r)1/4( Th Tpi)i/2 (4.5) 

where Tp~ is the Planck temperature. For consistency we also require 
Tpl>> T >- Th . 

It is interesting to note that from the point of view of the gravitational 
field, de Sitter space is time symmetric. However, the cosmological material 
possesses an arrow of time defined by the direction of entropy production 
and flow. This comes in turn from the arrow of time defined by the viscosity, 
which is an irreversible process. The time directionality of the viscosity 
depends upon an assumption about the microscopic state of the fluid, such 
as the absence of correlations between particles in the past (but not the 
future). At the present level of theory one simply assumes an equation of 
state to maintain steady-state conditions, and this gives no information 
about the microscopic state of  the fluid. It merely requires that the mass- 
energy density remains constant as the universe expands. A suitable micro- 
scopic theory would have to account for the continuous creation of new 
particles to maintain this requirement. Such a microscopic theory, which 
might be along the lines of the so-called creation field (or C field) of Hoyle 
and Narlikar (1974), would need a quantum mechanical description. The 
spontaneous uncorrelated creation (rather than annihilation) of particles 
in the expanding universe would then define an arrow of time. This is 
usually implicit in the various treatments of  particle creation in expanding 
universes (e.g., Birrell and Davies, 1981, Chapter 8), and its origin can be 
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traced to an assumption about the nature of  the initial quantum state, such 
as random phases. 

5. GRAVITATIONAL ENTROPY 

The theorem mentioned in Section 3 is valid only so long as a--> o0 as 
t-~ oe. This is not the case for a universe that reaches a maximum value of 
a and then recontracts to a final singularity. In that case the integral in the 
expression (3.2) for the radius of  the event horizon (and the corresponding 
modifications for the k = +1 models) must be truncated at the final singular- 
ity, t = t i .  As t-~ tj, so Rh ~ 0 (hence A-~ 0) in all cases. As we have seen, 
it can still be the case that a generalized second law remains valid, even as 
the horizon shrinks, due to viscous generation of entropy in the cosmological 
fluid. However,  one could still consider those cosmological models which 
contract to a final singularity without viscosity, e.g., the k = +1 radiation- 
filled Friedmann model with zero cosmological constant. In this particular 
model, for example, a~( t f -01 /2  and Rhoc t f - t  as t ~  (c- The radiation 
entropy in a comoving volume a 3 is constant, so the entropy density is 
proport ional  to a-3W-(ty-t) -3/2. Hence the total radiation entropy in a 
horizon volume is proport ional  to (t I -  03/2, which also tends to zero as 
t ~ ty. It follows that both the radiation entropy and the horizon entropy 
decrease monotonically as the final singularity is approached.  

The existence of such models signals a clear violation of the generalized 
second law of thermodynamics.  One might take three different positions 
concerning this result. The first is to accept it at face value. We are used to 
regarding the second law of thermodynamics as an absolutely inviolable 
law of nature, but why must this be so? Arguments in defense of the second 
law emphasize the paradoxical  consequences that could attend a violation, 
such as the construction of a perpetuum mobile. It may be the case, however, 
that in this broader  generalized form, a violation of the second law will not 
automatically lead to such paradoxical consequences. For example,  one 
might consider a Carnot  cycle to transfer heat from a cold to a hot body 
without the expenditure of  work, using in some way the thermodynamic 
properties of  the event horizon in a contracting universe [following the idea 
of "mining" the de Sitter horizon by a box-on-a-rope mechanism (Davies, 
1984b)]. It might then be found that such a cycle could not be completed 
in the time available before the universe reaches an end at the final singular- 
ity. Only detailed calculations can settle this point. 

The second position is to question the assumption that the gravitational 
entropy is always given by (one-quarter of) the event horizon area. One 
might conjecture that some more elaborate dependence on the spacetime 
structure is called for. (Indeed, such a conjecture has been made by Penrose 
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and others--see below.) For example, the entropy might be a functional of 
geometry that reduces to event horizon area in static spacetimes, but has a 
more complicated form when the horizon area is changing with time. 
Possibly a simple sum of horizon area and some other functional of geometry 
(which reduces to an additive constant in the static case) would work. To 
rescue the second law for a recontracting Friedmann model, the overlooked 
portion of the gravitational entropy would need to rise sufficiently fast (but 
could still remain finite) as the universe contracts to the final singularity. 

The third point of view is to regard the recontracting Friedmann model 
as unstable, i.e., the initial data form a set of measure zero in the space of 
initial conditions. It is known that, generically, recollapsing universes are 
unstable against the growth of anisotropy. This might in itself rescue the 
second law, if the anisotropization of the horizon causes the area to grow 
faster than the contraction causes it so shrink. However, I wish to consider 
here a more interesting possibility. 

It has long been appreciated that a self-gravitating system defines a 
gravitational arrow of time because, roughly speaking, it grows more clumpy 
with time. The general trend to go from "smooth to clumpy" should, one 
supposes, be expressible in terms of  a growth of gravitational entropy. This 
suggests that gravitational entropy should be defined in terms of some 
measure of the "degree of clumpiness" of the gravitational field. Penrose 
(1979), for example, has suggested that the Weyl conformal tensor might 
provide such a measure. Here I wish to propose that the relevant quality 
of the field is not its departure from conformal flatness, but its complexity. 
A clumpy gravitational arrangement is certainly more complex than a 
smooth one. 

Assuming that complexity really does capture the essential irreversible 
quality of gravitational time development, it is obviously necessary to have 
some precise way of quantifying it. Recently algorithmic complexity theory 
has been proposed as a formalism for quantifying complexity. In particular, 
Zurek (to appear) has defined an "algorithmic entropy" based on the work 
of Bennett (1982). Zurek's definition has the important virtue that it is not 
formulated in terms of ensembles, but is meaningful for a single state of 
the system. This is in contrast to the usual definition, based on Shannon's 
information theory, where the entropy is taken as a measure of our ignorance 
of  the system, i.e., in terms of missing information. 

Roughly speaking, the algorithmic complexity of a state is the number 
of bits of  information contained in the minimal computer algorithm that 
can simulate the system. A more complex system obviously requires a more 
elaborate algorithm. According to Zurek, the physical entropy is the sum 
of the missing information (i.e., Shannon e n t r o p y ) a n d  the length of the 
most concise record expressing the information about the state already at 



1064 Davies 

hand. For thermodynamic equilibrium this definition reproduces the usual 
results of statistical mechanics. Consider, for example, a gas in thermo- 
dynamic equilibrium. The molecules are distributed at random. With the 
usual coarse graining one would assign a certain entropy to the gas. If, 
however, we could inspect the gas more closely, the complexity of the 
chaotic arrangement of molecules would be seen to be greater. Thus, the 
length of the record goes up. On the other hand, because of the closer 
scrutiny of  the gas, the missing information would have gone down. These 
two changes compensate. 

It is interesting to apply these ideas to the gravitational case. First 
consider a black hole. It is in the nature of  the event horizon that observers 
outside the hole have no access to information about the interior state, 
except for the mass, certain charges, and the angular momentum. As pointed 
out by Hawking, this gives black hole entropy an "objective" quality. That 
is, we cannot choose to inspect the interior of the hote more closely. The 
black hole uniqueness theorems ensure that the hole is algorithmically very 
simple to describe. Therefore the physical entropy of the hole consists 
almost entirely of missing information. 

Now consider the case of the growth of clumpiness of a gravitational 
field, without an event horizon. An initially smooth field requires a relatively 
short algorithm to specify it. By contrast, a clumpy field is very complex 
and requires a much longer algorithm. In general, there will also be some 
missing information due to our imperfect knowledge of the field. However, 
in principle we could inspect the field with arbitrary resolution, in which 
case the algorithmic record would be longer, and the information entropy 
could be reduced to zero. 

I conjecture that in a recontracting universe the growth in anisotropy 
and inhomogeneity that is generically expected represents a rise in com- 
plexity and hence in algorithmic entropy that more than compensates for 
the combined loss of matter entropy and horizon area. I hope to present a 
detailed study of this conjecture elsewhere. 

6. COSMIC ENTROPY CENSOR 

It is often the case that an accepted theory can admit solutions which 
are unpalatable or even paradoxical on physical grounds. Under those 
circumstances, rather than reject the theory, one may prefer to append to 
it a statement forbidding such unacceptable solutions. The most obvious 
examples of this concern questions of causality. Special relativity admits 
the existence of tachyons, but because they would enable signals to be sent 
into the past, they are usually ruled out. Similarly, in general relativity, 
there are solutions to Einstein's field equations with closed timelike world 
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lines, which are equally problematical from the point of view of causality. 
Singularities in general relativity likewise pose a problem, because they 
represent a breakdown of  causality. Especially unpleasant are "naked"  
singularities, which form from nonsingular initial conditions, and represent 
a breakdown of causality at some finite epoch in the history of the universe. 
Usually the so-called cosmic censorship hypothesis of Penrose (1969) is 
invoked to rule out such a situation. 

Potential violations of  the second law of thermodynamics are really in 
the same category. After all, the second law imposes on the universe an 
arrow of  time, which defines the directionality of the cauSe-~ effect relation- 
ship. A violation of the second law could lead to an inversion of that 
relationship, letting "time run backward" and opening the way to the same 
sort of paradoxical effects as with tachyons and closed timelike world lines, 
i.e., enabling signals to be sent into the past. It seems reasonable to invoke 
an "entropy censor" to forbid such circumstances. 

This conjecture becomes especially interesting if it is extended to the 
generalized second law of thermodynamics, because it then makes a strong 
statement about spacetime structure. A weak form of entropy censorship 
hypothesis is to rule out any solution of the gravitational field equations in 
which the sum of the gravitational and matter entropy decreases with time 
at any epoch. Such a hypothesis eliminates a very large class of  spacetimes, 
including, for example, all so-called hyperinflationary models [where the 
scale factor increases faster than an exponential, e.g., as exp(t2)] in which 
viscosity fails to generate entropy fast enough to keep pace with the contract- 
ing horizon area. On the face of it, this weak hypothesis would also rule 
out a recontracting Friedmann model unless some additional contribution 
to the gravitational entropy is discovered. 

One might also entertain a strong entropy censorship principle, in 
which any theory which admits violations of the weak principle is rejected. 
The justification for the strong hypothesis is that, given a universe described 
by such a theory, a sufficiently advanced intelligence could in principle 
manufacture a decrease of  entropy. In the case of  ordinary thermodynamics 
this does not pose a problem. It is well known that, in principle, a Maxwell 
demon could achieve a violation of the second law. However, in order to 
operate, the demon has to inspect the microscopic state of a gas, and this 
procedure itself generates entropy at a compensatory rate (Bennett, 1987). 

When it comes to gravitational entropy, the situation is different. 
Horizon-decreasing solutions require only that appropriate global initial 
conditions are established and not, as with the Maxwell demon, that micro- 
scopic degrees of  freedom are manipulated continuously. There would seem 
to be no restrictions of  an informational or algorithmic nature on the 
establishment of horizon-decreasing initial conditions in those theories that 
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admit such solutions. The strong entropy censorship hypothesis would be 
a very restrictive filter of  both matter and gravitational field theories. Almost 
all Lagrangians would be inconsistent with the hypothesis. 
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